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 Basic motivation: 

 how to calculate and illustrate in a simple 
way the wind field around an industrial 
complex to help in some occasions to 
refine results of AERMOD 

 and show how a plume could behave 

 Everything done here is based on 
published litterature 

Introduction 
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Introduction 

 2 blocs are necessary: 

 obtain wind field solution in built areas – 
industrial complex or urban center 

 resolve the equations for lagrangian 
transport of parcels 
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WIND FIELD  

 Options 

 CFD model: solve basic movement 
equations 

 interesting, precise 

 longer execution time 

 parameter model  

 simplified building effects 

 quite fast 
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AIRFLO MODEL 

 Based on Rockle (1990), Kaplan et 
Dinar (1996), Los Alamos (2003 and 
others)  following Hosker (1984) 

 

 Wind field parametrized according to 
influence zone around a building 
 base on one building not too excentric 

form (cubic or rectangle) 
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parametrized zones 

upfront cavities 

wake 

rear cavity 



10 

upfront cavities 
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rear cavity and wake 
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street canyon  

si S < S** 
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S: street width 

d: distance from grid point to upwind building 

U(H) wind on roof of upwind building 

for non perpendicular wind to canyon axis wind is decomposed in 
parallel and perpendicular components 
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 Buildings are defined  

 4 corners, height 

 for industrial complex, take BPIP 

 Each grid point is determined 

 free 

 inside a building 

 in zone: upfront, cavity, wake, canyon  

 search for street canyons is tedious 

 grid points in street canyons are saved in a file 
for further applications 
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Initial wind field 

 MOST profile according to the weather 
conditions (wind, temperature, cloud 
ect) and local variables (roughness, 
albedo ect) 

 Each grid point is attributed an initial 
wind field depending on its position 
with respect to building zones 
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Wind field solution 

 Initial wind field is the start up wind for 
the application of a mass conservation 
model on the modelling domain 
(divergence minimization) 
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 the function E is minimize over the whole 
domain  

 (u0,v0,w0): initial wind field: wind 
attributed in various zones 

 (u,v,w): final wind field 

     
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 with a zero divergence constraint on the final wind field 

0V 
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 is the same as to minimize J 
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 and λ(x,y,z) is subjected to the following 
identity and is solved numerically; R is called 
the source term (divergence) 

2
2 2 2

1

2 2 2

2

R
x y z

  



   
   

   



20 

then the final wind field (u,v,w) is obtained as a 
function of (x,y,z) with λ(x,y,z) 
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 The λ equation is discretized as  
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 At solid surfaces such as wall and roofs 
the wind and the derivatives are null 

0 0 0ou ou
x y z
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 At points where there are solid surfaces 
discretized λ equation is adjusted to 
have zero derivatives.  For example for 
a solid surface to EAST and one SOUTH 
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 which is put back in the discretized 
equation 
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 Every point has its own equation depending on 
where is the solid surface (example wall to the 
NORTH, wall to WEST, roof UNDER)  

  λi,j,k field is then obtained iteratively according to the 
procedure given by Press (Numerical Recipes in 
FORTRAN) 

 Final wind (u,v,w) is then obtained for all grid points 

 Wind field for downtown Montréal (170 structures) 
calculated in 2 minutes: 1 min for initial search of 
canyon, 1 min for wind calculation, 4 millions grid 
points 
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AIRLAG MODEL 

 Moves particules in the wind field 
(U,V,W) from AIRFLO 

 Same spatial discretization 

 Wind, buildings and other infos 
imported from AIRFLO output 



27 

Few equations 

 Speed increments of a parcel moving in a wind field (U1,U2, U3) are 
shown in Rodean, based on Thomson; these have a tensor form.  The 
terms contain a deterministic part and a stochastic part to mimic 
turbulence 
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 expressing the tensors as summations 
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τ is the shear stress 
matrix 

λ is inverse of τ 
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 and for a1 !!!! 
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 Expressions are complex 

 In a simple case without buildings one 
can use a reference system aligned with 
the mean wind i.e. with U2=0 , U3=0 
also (no vertical movement in the mean 
flow)  and so many terms go to 0 
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 With buildings U3 (vertical wind) may be non 
zero; but a moving doubly rotated system can 
have U2=0 and  U3=0 

 This was developped; but this requires 
continual change in reference frame following 
the particle and complex calculations  (much 
time consuming) and interaction with 
buildings is difficult to follow 

 Ordinary reference frame (x,y,z) is used 
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 To improve calculation speed all 
variables that could be computed 
before start are done (position 
dependent values are attributed to 
matrices)  
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Solid surfaces  

 Parcels are reflected on solid surface 
and on ground 

 Tennis ball refection in 3d  

 Special cases as ground to building, 
building corners, roof to wall ect are 
considered 
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Examples 

 Only qualitative results examples are 
shown here 

 Model validation will be undertaken 
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 A short anecdote....! 

 Rockle parametrization is based on rectangular 
forms 

 non-rectangular buildings are thus approximated 
as superposition of rectangles 

 one would like to have some procedure to get 
rectangles from polygonal buildings; defined for 
example as in AERMOD VIEW with BPIP file 
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 efforts were devoted to program an algorithm to 
decompose concave rectilinear polygons in a 
minimum number of rectangles that superpose or 
do not superpose 
 what a job ..... 

 program will be made available on internet 
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Québec, summer 2012: legionela episod 
13 deads 
origin: one cooling tower ; identified 20 september 

27/08/2012 news 

a try for AIRLAG 

as a volounteer test 
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the problem region were search was made 

470 structures individual or joined (hand worked-no interface to municipal 
building data base yet) were input to AIRFLO/AIRLAG 
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one part of the region, view towards NE 

domain 1.5 km x 1.5 km 

3D buildings view from AERMOD View 
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one place was suspected 
trial: EAST wind, summer daytime 

 probable 
origin 
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identified source roof 

wind SW 

wind NW 

bacteria can reach people and go far 
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Montréal, part of downtown (170 structures) 
3D from AERMOD View 
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complex 
circulation 
patterns 
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Ongoing and future works 

 Vegetation effect 

 Lagrangian fluctuations to calculate exceedances 
probabilities 

 Topography 

 Roof circulation 

 Validation with wind tunnel experiments 

 Improve code performance 

 Migration to a better performing FORTRAN compiler 

 Visual interface 

 Wind field solution is still under questionning (CFD?) 
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Conclusion 

 Development of this model (up to this 
point) required non negligeable efforts 

 Further development appears 
interesting 



46 

THANKS 


