

APPLICATION OF LAGRANGIAN MODELLING IN URBAN AREAS

Richard Leduc, Ph.D. Environmental Modelling Workshop Edmonton, March 13 2013

SPECIAL THANKS

Thanks to Jesse Thé, Lakes
 Environmental, and Yann Contratto,
 Olfactoexpert for their continual support

- Introduction
- Wind field
- Particle model
- Examples

BASE REFERENCE

- H.C. RODEAN, 1996
- STOCHASTIC LAGANGIAN MODELS OF TURBULENT DIFFUSION
- American Meteorological Society, Meteorological Monograph , Volume 26
- JD Wilson Alberta University works are significative

Introduction

Basic motivation:

 how to calculate and illustrate in a simple way the wind field around an industrial complex to help in some occasions to refine results of AERMOD

and show how a plume could behave

 Everything done here is based on published litterature

Introduction

- 2 blocs are necessary:
 - obtain wind field solution in built areas industrial complex or urban center
 - resolve the equations for lagrangian transport of parcels

WIND FIELD

- Options
 - CFD model: solve basic movement equations
 - interesting, precise
 - longer execution time
 - parameter model
 - simplified building effects
 - quite fast

AIRFLO MODEL

 Based on Rockle (1990), Kaplan et Dinar (1996), Los Alamos (2003 and others) following Hosker (1984)

- Wind field parametrized according to influence zone around a building
 - base on one building not too excentric form (cubic or rectangle)

parametrized zones

upfront cavities

¤	FX¤	FY¤
a _x ¤	$ \begin{array}{ c c } & \mathbb{I} \\ & &$	$ \begin{bmatrix} I \\ I \end{bmatrix} \frac{L}{2} $
a _y ¤	$\frac{\alpha}{\mathbb{I}} \qquad \frac{W}{2} \mathbb{I}$	\mathbb{I} $L_f \cos^2 \theta \sqrt{1 - \left(\frac{z}{0.6H}\right)^2} \approx$
vent• initial¤	u ₀ =0¤	v _o =0¤

$$\frac{L_f}{H} = \frac{2(W/H)}{1+0.8W/H}$$

rear cavity and wake

¤	N¤	F¤
a _x , ¤		$\frac{\mathbb{I}}{3L_r\sqrt{1-\left(\frac{z}{H}\right)^2}} \propto$
a _y ,¤	$\frac{\frac{b_e}{2}}{\frac{2}{\alpha}}\mathbb{I}$	$\frac{b_e}{2}$ ¤
composante·x¤	$u_0 = -u(H) \left(1 - \frac{d_l}{d_N} \right)^2 \mathbb{I}$	$u_0 = u(z) \left(1 - \frac{d_N}{d_l}\right)^{1.5} \propto$
composante•y¤	$\boldsymbol{v}_{0} = -\boldsymbol{v}(H) \left(1 - \frac{d_{l}}{d_{N}}\right)^{2} \mathbb{I}$	$\boldsymbol{v}_0 = \boldsymbol{v}(\boldsymbol{z}) \left(1 - \frac{\boldsymbol{d}_N}{\boldsymbol{d}_l} \right)^{1.5} \boldsymbol{x}$

$$\frac{L_{\rm r}}{H} = \frac{1.8W/H}{\left(L/H\right)^{0.3} \left(1 + 0.24W/H\right)}$$

11

$$\begin{aligned} & \Pi \\ & U = -U(H) \frac{d}{0.5S} \left(\frac{S-d}{0.5S} \right) \cdots W = - \left| \frac{U(H)}{2} \left(1 - \frac{d}{0.5S} \right) \right| \left(1 - \frac{S-d}{0.5S} \right) \\ & \Pi \end{aligned}$$

- S: street width
- d: distance from grid point to upwind building

U(H) wind on roof of upwind building

for non perpendicular wind to canyon axis wind is decomposed in parallel and perpendicular components

Buildings are defined

- 4 corners, height
- for industrial complex, take BPIP
- Each grid point is determined
 - free
 - inside a building
 - in zone: upfront, cavity, wake, canyon
 - search for street canyons is tedious
 - grid points in street canyons are saved in a file for further applications

Initial wind field

- MOST profile according to the weather conditions (wind, temperature, cloud ect) and local variables (roughness, albedo ect)
- Each grid point is attributed an initial wind field depending on its position with respect to building zones

Wind field solution

 Initial wind field is the start up wind for the application of a mass conservation model on the modelling domain (divergence minimization)

the function E is minimize over the whole domain

- (u₀,v₀,w₀): initial wind field: wind attributed in various zones
- (u,v,w): final wind field

$$E(u, v.w) = \int_{V} \left[\alpha_{1}^{2} \left(u - u_{0} \right)^{2} + \alpha_{2}^{2} \left(v - v_{0} \right)^{2} + \alpha_{3}^{2} \left(w - w_{0} \right)^{2} \right] dV$$

with a zero divergence constraint on the final wind field

is the same as to minimize J

$$J(u, v, w; \lambda) = \int_{V} \begin{bmatrix} \alpha_1^2 (u - u_0)^2 + \alpha_2^2 (v - v_0)^2 + \alpha_3^2 (w - w_0)^2 + \\ \lambda \left(\frac{\partial u}{\partial x} + \frac{\partial v}{\partial y} + \frac{\partial w}{\partial z} \right) \end{bmatrix} dV$$

 and λ(x,y,z) is subjected to the following identity and is solved numerically; R is called the source term (divergence)

$$\frac{\partial^2 \lambda}{\partial x^2} + \frac{\partial^2 \lambda}{\partial y^2} + \left(\frac{\alpha_1}{\alpha_2}\right)^2 \frac{\partial^2 \lambda}{\partial z^2} = R$$

then the final wind field (u,v,w) is obtained as a function of (x,y,z) with $\lambda(x,y,z)$

$$u = u_0 + \frac{1}{2\alpha_1^2} \frac{\partial \lambda}{\partial x}$$
$$v = v_0 + \frac{1}{2\alpha_1^2} \frac{\partial \lambda}{\partial y}$$
$$w = w_0 + \frac{1}{2\alpha_2^2} \frac{\partial \lambda}{\partial z}$$

• The λ equation is discretized as

$$R_{i,j,k} = \frac{\lambda_{i+1,j,k} - 2\lambda_{i,j,k} + \lambda_{i-1,j,k}}{\Delta x^2} + \frac{\lambda_{i,j+1,k} - 2\lambda_{i,j,k} + \lambda_{i,j-1,k}}{\Delta y^2} - \frac{\left(\frac{\alpha_1}{\alpha_2}\right)^2 \frac{\lambda_{i,j,k+1} - 2\lambda_{i,j,k} + \lambda_{i,j,k-1}}{\Delta z^2}}{\Delta z^2}$$

 $R(I,J,K) = -2\alpha_1^2 DIV(I,J,K)$

At solid surfaces such as wall and roofs the wind and the derivatives are null

$$\frac{\partial \lambda}{\partial x} = 0 \ ou \frac{\partial \lambda}{\partial y} = 0 \ ou \frac{\partial \lambda}{\partial z} = 0$$

 At points where there are solid surfaces discretized λ equation is adjusted to have zero derivatives. For example for a solid surface to EAST and one SOUTH

$$\frac{\partial^2 \lambda}{\partial x^2} = \frac{\partial}{\partial x} \left(\frac{\partial}{\partial x} \right) = \frac{1}{\Delta x} \left(\frac{\partial \lambda}{\partial x} \Big|_{i+1/2} - \frac{\partial \lambda}{\partial x} \Big|_{i-1/2} \right)$$
$$= \frac{1}{\Delta x} \left(0 - \frac{\partial \lambda}{\partial x} \Big|_{i-1/2} \right) = \frac{1}{\Delta x} \left(- \frac{\partial \lambda}{\partial x} \Big|_{i-1/2} \right)$$
$$= \frac{\lambda_{i-1} - \lambda_i}{\Delta x^2}$$

$$\frac{\partial^2 \lambda}{\partial y^2} = \frac{\lambda_{j+1} - \lambda_j}{\Delta y^2}$$

which is put back in the discretized equation

$$R_{i,j,k} = \frac{\lambda_{i-1,j,k} - \lambda_{i,j,k}}{\Delta x^2} + \frac{\lambda_{i,j+1,k} - \lambda_{i,j,k}}{\Delta y^2} + \left(\frac{\alpha_1}{\alpha_2}\right)^2 \frac{\lambda_{i,j,k+1} - 2\lambda_{i,j,k} + \lambda_{i,j,k-1}}{\Delta z^2}$$

• to obtain a value for $\lambda_{i,j,k}$

$$\begin{split} \lambda_{i-1,j,k} &- \lambda_{i,j,k} + A\left(\lambda_{i,j+1,k} - \lambda_{i,j,k}\right) + B\left(\lambda_{i,j,k+1} - 2\lambda_{i,j,k} + \lambda_{i,j,k-1}\right) = \Delta x^2 R_{i,j,k} \\ \lambda_{i,j,k} &= \frac{-\Delta x^2 R_{i,j,k} + \lambda_{i-1,j,k} + A\lambda_{i,j+1,k} + B\left(\lambda_{i,j,k+1} + \lambda_{i,j,k-1}\right)}{2\left(0.5 + 0.5A + B\right)} \\ A &= \Delta x^2 / \Delta y^2 \ B &= \Delta x^2 \left(\alpha_1 / \alpha_2\right)^2 \end{split}$$

- Every point has its own equation depending on where is the solid surface (example wall to the NORTH, wall to WEST, roof UNDER)
- λ_{i,j,k} field is then obtained iteratively according to the procedure given by Press (Numerical Recipes in FORTRAN)
- Final wind (u,v,w) is then obtained for all grid points
- Wind field for downtown Montréal (170 structures) calculated in 2 minutes: 1 min for initial search of canyon, 1 min for wind calculation, 4 millions grid points

AIRLAG MODEL

- Moves particules in the wind field (U,V,W) from AIRFLO
- Same spatial discretization
- Wind, buildings and other infos imported from AIRFLO output

Few equations

Speed increments of a parcel moving in a wind field (U₁,U₂, U₃) are shown in Rodean, based on Thomson; these have a tensor form. The terms contain a deterministic part and a stochastic part to mimic turbulence

$$du_{i} = a_{i}(\vec{x}, \vec{u}, t)dt + b_{ij}(\vec{x}, \vec{u}, t)dW_{j}(t)$$

$$a_{i} = -\left(\frac{C_{0}\varepsilon}{2}\right)\lambda_{ik}(u_{k} - U_{k}) + U_{j}\frac{\partial U_{i}}{\partial x_{j}} + \frac{1}{2}\frac{\partial \tau_{ij}}{\partial x_{j}}$$

$$+ \left[\frac{\partial U_{i}}{\partial x_{j}} + \frac{\lambda_{ij}}{2}\left(U_{m}\frac{\partial \tau_{il}}{\partial x_{m}}\right)\right]\left(u_{j} - U_{j}\right)$$

$$+ \left[\frac{\lambda_{ij}}{2}\frac{\partial \tau_{il}}{\partial x_{k}}\right]\left(u_{j} - U_{j}\right)\left(u_{k} - U_{k}\right)$$

expressing the tensors as summations

$$a_{i} = \sum_{k=1}^{3} \left(-\left(\frac{C_{0}\varepsilon}{2}\right)\lambda_{ik}(u_{k} - U_{k}) \right)$$

$$T1$$

$$+ \sum_{j=1}^{3} U_{j} \frac{\partial U_{i}}{\partial x_{j}}$$

$$T2$$

$$T2$$

$$T \text{ is the shear stress matrix}$$

$$+ \sum_{j=1}^{3} \frac{1}{2} \frac{\partial \tau_{ij}}{\partial x_{j}}$$

$$T3$$

$$\lambda \text{ is inverse of } \tau$$

$$+ \sum_{j=1}^{3} \left[\frac{\partial U_{i}}{\partial x_{j}} \right] \left(u_{j} - U_{j} \right)$$

$$T4a$$

$$+ \sum_{l=1}^{3} \sum_{j=1}^{3} \sum_{m=l}^{3} \frac{\lambda_{lj}}{2} U_{m} \left(\frac{\partial \tau_{il}}{\partial x_{m}} \right) \left(u_{j} - U_{j} \right)$$

$$T4b$$

$$+ \sum_{l=1}^{3} \left(\frac{\lambda_{lj}}{2} \right) \sum_{j=1}^{3} \sum_{k=l}^{3} \left(\frac{\partial \tau_{il}}{\partial x_{k}} \right) \left(u_{j} - U_{j} \right)$$

$$T5$$

and for a₁ !!!!

$$\begin{aligned} a_{1} &= -\frac{C_{0}\varepsilon}{2} \Big(\lambda_{11} (u_{1} - U_{1}) + \lambda_{12} (u_{2} - U_{2}) + \lambda_{13} (u_{3} - U_{3}) \Big) \\ &+ U_{1} \frac{\partial U_{1}}{\partial x_{1}} + U_{2} \frac{\partial U_{1}}{\partial x_{2}} + U_{3} \frac{\partial U_{1}}{\partial x_{3}} + \frac{1}{2} \Big(\frac{\partial \tau_{11}}{\partial x_{1}} + \frac{\partial \tau_{12}}{\partial x_{2}} + \frac{\partial \tau_{13}}{\partial x_{3}} \Big) \\ &+ \frac{\partial U_{1}}{\partial x_{1}} (u_{1} - U_{1}) + \frac{\partial U_{1}}{\partial x_{2}} (u_{2} - U_{2}) + \frac{\partial U_{1}}{\partial x_{3}} (u_{3} - U_{3}) \\ &+ \frac{1}{2} \Big(U_{1} \frac{\partial \tau_{11}}{\partial x_{1}} + U_{2} \frac{\partial \tau_{11}}{\partial x_{2}} + U_{3} \frac{\partial \tau_{12}}{\partial x_{3}} \Big) \Big(\lambda_{11} (u_{1} - U_{1}) + \lambda_{12} (u_{2} - U_{2}) + \lambda_{13} (u_{3} - U_{3}) \Big) \\ &+ \frac{1}{2} \Big(U_{1} \frac{\partial \tau_{12}}{\partial x_{1}} + U_{2} \frac{\partial \tau_{12}}{\partial x_{2}} + U_{3} \frac{\partial \tau_{12}}{\partial x_{3}} \Big) \Big(\lambda_{21} (u_{1} - U_{1}) + \lambda_{22} (u_{2} - U_{2}) + \lambda_{13} (u_{3} - U_{3}) \Big) \\ &+ \frac{1}{2} \Big(U_{1} \frac{\partial \tau_{13}}{\partial x_{1}} + U_{2} \frac{\partial \tau_{13}}{\partial x_{2}} + U_{3} \frac{\partial \tau_{13}}{\partial x_{3}} \Big) \Big(\lambda_{21} (u_{1} - U_{1}) + \lambda_{22} (u_{2} - U_{2}) + \lambda_{23} (u_{3} - U_{3}) \Big) \\ &+ \frac{1}{2} \Big(U_{1} \frac{\partial \tau_{13}}{\partial x_{1}} + U_{2} \frac{\partial \tau_{13}}{\partial x_{2}} + U_{3} \frac{\partial \tau_{13}}{\partial x_{3}} \Big) \Big(\lambda_{31} (u_{1} - U_{1}) + \lambda_{32} (u_{2} - U_{2}) + \lambda_{33} (u_{3} - U_{3}) \Big) \\ &+ \frac{1}{2} \Big(\left(\lambda_{11} (u_{1} - U_{1}) + \lambda_{12} (u_{2} - U_{2}) + \lambda_{13} (u_{3} - U_{3}) \right) \Big) \Big(\frac{\partial \tau_{11}}{\partial x_{1}} (u_{1} - U_{1}) + \frac{\partial \tau_{11}}{\partial x_{2}} (u_{2} - U_{2}) + \frac{\partial \tau_{11}}{\partial x_{3}} (u_{3} - U_{3}) \Big) \\ &+ \Big(\lambda_{21} (u_{1} - U_{1}) + \lambda_{22} (u_{2} - U_{2}) + \lambda_{23} (u_{3} - U_{3}) \Big) \Big(\frac{\partial \tau_{12}}{\partial x_{1}} (u_{1} - U_{1}) + \frac{\partial \tau_{12}}{\partial x_{2}} (u_{2} - U_{2}) + \frac{\partial \tau_{13}}{\partial x_{3}} (u_{3} - U_{3}) \Big) \\ &+ \Big(\lambda_{31} (u_{1} - U_{1}) + \lambda_{32} (u_{2} - U_{2}) + \lambda_{33} (u_{3} - U_{3}) \Big) \Big(\frac{\partial \tau_{13}}{\partial x_{1}} (u_{1} - U_{1}) + \frac{\partial \tau_{12}}{\partial x_{2}} (u_{2} - U_{2}) + \frac{\partial \tau_{13}}{\partial x_{3}} (u_{3} - U_{3}) \Big) \\ &+ \Big(\lambda_{31} (u_{1} - U_{1}) + \lambda_{32} (u_{2} - U_{2}) + \lambda_{33} (u_{3} - U_{3}) \Big) \Big(\frac{\partial \tau_{13}}{\partial x_{1}} (u_{1} - U_{1}) + \frac{\partial \tau_{12}}{\partial x_{2}} (u_{2} - U_{2}) + \frac{\partial \tau_{13}}{\partial x_{3}} (u_{3} - U_{3}) \Big) \Big) \\ &+ \Big(\lambda_{31} (u_{1} - U_{1}) + \lambda_{32} (u_{2} - U_{2}) + \lambda_{33} (u_{3} - U_{3}) \Big)$$

Expressions are complex

 In a simple case without buildings one can use a reference system aligned with the mean wind i.e. with U₂=0, U₃=0 also (no vertical movement in the mean flow) and so many terms go to 0

- With buildings U₃ (vertical wind) may be non zero; but a moving doubly rotated system can have U₂=0 and U₃=0
- This was developped; but this requires continual change in reference frame following the particle and complex calculations (much time consuming) and interaction with buildings is difficult to follow
- Ordinary reference frame (x,y,z) is used

 To improve calculation speed all variables that could be computed before start are done (position dependent values are attributed to matrices)

Solid surfaces

- Parcels are reflected on solid surface and on ground
- Tennis ball refection in 3d
- Special cases as ground to building, building corners, roof to wall ect are considered

- Only qualitative results examples are shown here
- Model validation will be undertaken

A short anecdote....☺!

- Rockle parametrization is based on rectangular forms
- non-rectangular buildings are thus approximated as superposition of rectangles
- one would like to have some procedure to get rectangles from polygonal buildings; defined for example as in AERMOD VIEW with BPIP file

- efforts were devoted to program an algorithm to decompose concave rectilinear polygons in a minimum number of rectangles that superpose or do not superpose
 - what a job ⊗⊗.....
 - program will be made available on internet

Québec, summer 2012: legionela episod 13 deads origin: one cooling tower ; identified 20 september

27/08/2012 news a try for AIRLAG as a volounteer test the problem region were search was made

470 structures individual or joined (hand worked-no interface to municipal building data base yet) were input to AIRFLO/AIRLAG

one place was suspected trial: EAST wind, summer daytime

TRAJECTOIRES ALTITUDE DE 6 M ET MOINS

bacteria can reach people and go far

41

Montréal, part of downtown (170 structures) 3D from AERMOD View

Ongoing and future works

- Vegetation effect
- Lagrangian fluctuations to calculate exceedances probabilities
- Topography
- Roof circulation
- Validation with wind tunnel experiments
- Improve code performance
- Migration to a better performing FORTRAN compiler
- Visual interface
- Wind field solution is still under questionning (CFD?)

Conclusion

- Development of this model (up to this point) required non negligeable efforts
- Further development appears interesting

THANKS

